
Alternating Current RL Circuits

1 Objectives

1. To understand the voltage/current phase behavior of RL circuits under applied alter-
nating current voltages, and

2. To understand the current amplitude behavior of RL circuits under applied alternating
current voltages.

2 Introduction

You have studied the behavior of RC circuits under both direct and alternating current
conditions. The final passive component we must consider is the inductor. The voltage
across a capacitor is proportional to the charge on it (V (t) = q(t)/C), and the voltage across
a resistor is proportional to the rate at which charge flows through it (VR(t) = Rdq(t)/dt),
while the voltage across the inductor is proportional to the rate of change of the current
through it

VL(t) = −LdI(t)

dt
.

The minus sign indicates that the voltage across the inductor seeks to counter the changing
current (a phenomenon known as Lenz’s Law).

In a previous lab1 you studied the behavior of the RC circuit under alternating applied
(or AC) voltages. Here, you will study the behavior of a similar circuit where the capacitor
is replaced with an inductor ; see Figure 1.

The SI unit of inductance is the henry, with symbol H:

H = Ω s =
kg m2

C2
.

1Alternating Current RC Circuits

R1
Signal Generator

L1

Figure 1: The RL circuit.
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Voltage/current phase difference schematic
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Figure 2: A schematic of the phase difference between the applied voltage V (t) and the
derived current I(t).

The henry is named for Joseph Henry, an 18th century American contemporary of Michael
Faraday. Both men discovered electromagnetic induction independently and contemporane-
ously. Since Faraday is honored in the unit of capacitance, Henry is honored with the unit
of inductance.

3 Theory

Once again, let’s analyze this circuit using Kirchoff’s Rules. As always, you find

Vs(t) − VR(t) − VL(t) = 0 ,

leading to the differential equation

dI(t)

dt
+
R

L
I(t) =

Vs(t)

L
.

The behavior of this current is, in all important ways, identical to the behavior of the charge
on a capacitor. The time constant for current changes is τ = L/R. Again, we solve the
equation in all its particulars in Appendix A. For a sinusoidally varying source voltage

Vs(t) = Vs cosωt ,
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we find the current is again out of phase, but this time it lags the voltage (see Figure 2)

I(t) =
Vs
R

1√
1 + (ωτ)2

cos(ωt− φ)

VR(t) = Vs
1√

1 + (ωτ)2
cos(ωt− φ)

VL(t) = Vs
ωτ√

1 + (ωτ)2
sin(ωt− φ) ,

where the phase is given by

tanφ =
ωL

R
.

Just as for the capacitor circuit, we can define and use the concept of impedance to
predict the behavior of the circuit. The combination ωL has units of resistance, and we
define the inductive reactance by

XL = ωL .

The phase is given by

tanφ =
XL

R
,

while the circuit impedance is given by

Z2 = R2 +X2
L ,

which has all the same consequences for the voltage amplitudes as it did for the RC circuit.
Just as we did for the RC circuit, we can consider the behavior of this circuit as a function

of frequency. In the limit that the frequency goes to zero, the current will be steady state.
Since steady state means “no change”, the voltage across the inductor must vanish, and the
phase has to go to zero. This is what we see in Figure 3. In the other extreme, with very
high frequencies, the current is changing very quickly, so the voltage will all be visible across
the inductor; again, this is what we see in Figure 3. Inductors become transparent at low
frequencies, and opaque at high frequencies, just the opposite of the capacitor! Compare the
amplitude and phase response curves in Figure 3 with the same curves in the lab Alternating
Current RC Circuits.

If you are left wondering what happens when you put a AC voltage source, a resistor, a
capacitor, and an inductor into a single circuit, you’re thinking along the right lines. Stay
tuned for next week.

4 Procedures

You should receive two multimeters, an oscilloscope, a function generator, a decade resistance
box, and a decade inductor box.
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Voltage/current amplitude schematic
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(b) Voltage Amplitudes

Figure 3: The phase angle as a function of angular frequency is on the left, while the voltage
amplitudes are displayed on the right. In both cases, the frequency is normalized in units of
L/R. The phase is normalized to π/2, while the amplitudes are normalized to Vs.

1. First, let’s select component values for testing. Choose an inductor value somewhere
around 7 H. Select a frequency between 300 Hz and 600 Hz. Calculate XL and choose
a value for R ≈ 1.2XL. Measure and record the value of R.

2. Configure the circuit for testing as shown in Figure 1. Insert one of the multimeters
to record the AC current; except in the last two steps of the procedure, make sure the
current remains constant throughout the experiment.

3. Using the other multimeter, record the frequency f , and the RMS AC voltages across
the signal generator Vs, the resistor VR, and the inductor VL.

4. Let’s measure the phase shift between the current and applied voltage. Connect the
oscilloscope so as to measure the voltage across the resistor and signal generator; make
sure the negtive inputs share a common reference point. Make sure the two signal
baselines are centered with respect to the horizontal and vertical axes of the oscillo-
scope, and adjust the voltage and time scales so that slightly more than one cycle of
both waveforms is visible. Measure the phase shift as you did in the previous lab.
Increase the frequency by 50%, and determine the phase shift again. Double the initial
frequency, and repeat.

5. Next, map out the amplitude of the current response. Without changing R, vary the
frequency over, say, ten points, and record the frequency, RMS voltage Vs and RMS
current I at those points. Record you observations of the amplitudes of Vs and VR on
the oscilloscope.
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A Derivation of Solutions

The differential equation for the AC RL circuit is given in Section 3, and is nearly identical
to the equations we have studied in the DC RC and AC RC cases. In fact, in the DC case, we
can just substitute I(t) for q(t) and τ = L/R for τ = 1/RC, and we have the DC behavior
of the RL circuit straightaway. In the discharging case

I(t) = I(t0)e
−(t−t0)/τ ,

while in the charging case

I(t) = I(t0)e
−(t−t0)/τ +

Vs
R

(
1 − e−(t−t0)/τ

)
.

Again, like the RC circuit, in the charging RL circuit, the initial current “stored” in the
inductor decays away, while the imposed voltage “stores” a current in the inductor exponen-
tially.

In the AC case, very little of the derivation changes between the RC and RL circuits,
provided we replace the time constants appropriately. If you follow through all the work
from the RC lab, you will find

I(t) = I(t0)e
−(t−t0)/τ − e−(t−t0)/τ Vs

R

1

(1/τ)2 + ω2

(
1

τ
cosωt0 + ω sinωt0

)
+
Vs
R

1

(1/τ)2 + ω2

(
1

τ
cosωt+ ω sinωt

)
.

Again, the first line is the transient response, while the second line gives the steady state
response. Keeping only the steady state response, the same techniques as last time give us
the voltage profiles and phases given in Section 3.
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Pre-Lab Exercises

Answer these questions as instructed on Blackboard; make sure to submit them before your
lab session!

1. Calculate the reactance of a 7 H capacitor at a frequency of 250 Hz.

2. If an RL circuit has a 50 Ω resistor in series with a 7 mH inductor, what will its
impedance be at 500 Hz?

3. An RL circuit has a 5 kΩ resistor and a 1 H inductor. At what frequency will the
current lag the voltage by π/4?

4. An RL circuit has a 5 kΩ resistor and a 1 mH inductor. This circuit is driven by a
100 Hz sine wave with 1 V amplitude. What is the amplitude of the current in the
circuit?
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Post-Lab Exercises

1. From your recorded inductance, and measured resistance and frequency, determine
the reactance and impedance of your circuit. Make sure to estimate your uncertain-
ties. Determine the impedance experimentally via another method, taking care of the
uncertaintites.Do you get the same results?

2. Estimate the uncertainties on the measured values of Vs, VL, and VR. Are the three
values consistent with each other? Explain what you mean by “consistent”.

3. Describe qualitatively what happens to your signals when you vary the frequency.

4. From your measurements in Step 4 of the procedure, determine the phase shift at each
of the three measured frequencies, including an estimate of the uncertainty. How do
these compare to the theoretical predictions?

5. Is your data from Step 5 consistent with the predictions of theory? Specifically, do the
voltage and current amplitudes measured by oscilloscope and by multimeter match,
within uncertainties, and do they comport with theoretical expectations?

6. Discuss briefly whether you have met the objectives of the lab exercises.
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