Syllabus – Math 111 (Elementary Statistics and Probability) – FALL 2019.

York Early Academy.

Prof: Jean Cesarius Rouzier, email: jcesarius@york.cuny.edu

Course Description

Introduction to probability and statistics, four hours, four credits: Elements of statistics, graphs, frequency distributions, measures of central tendency and measures of dispersion, elementary probability theory, counting, binomial and normal distribution.

Course Description

Math 102 or equivalent

Text: ELEMENTARY STATISTICS by Larson and Farber (Picturing the world), Fifth Edition.

Objectives:

- A- To acquaint the student with the fundamental applications of statistics and probability.
- B- To learn about experiments, outcomes, probabilities, and odds.
- C- To learn about probability distributions, including binomial, normal and sampling distributions.
- D- To provide a foundation for the study of more specialized methods.

Course Outline

First Week: CHAPTER 1: section 1.1 - 1.3,

Introduction to statistics

- A- Definitions and types of statistics,
- B- Population, sample,
- C- Types of variables, parameters.

Second Week: CHAPTER 2: Section 2.1 - 2.2

Descriptive statistics:

- A- Frequency distribution
- B- Graphs and displays histogram, ogive curve.
- C- Frequency polygon, pie chart.
- D- Stem and Leaf plot.

Week 3 and 4: Section 2.3 - 2.5

- A- Measures of central tendency
- B- Measures of variation
- C- Measures of position:
 - i) Summation notation
 - ii) Mean, median, mode range, midrange
 - iii) Variance and standard deviation
- D- Measures for grouped data and other fractiles
- E- Empirical rule and Chebyshev's theorem. (Test 1. TBA)

Week 5, 6 and 7: Chapter 3: Section 3.1 - 3.4.

Probability Fundamental:

- A- Empirical and theoretical probabilities.
- B- Sample space, events and complement.
- C- Addition rule:
 - i) Mutually and non-mutually exclusive events.
- D- Multiplication rule:
 - i) Conditional probabilities (dependent and independent events and counting).

Week 8: Chapter 4: section 4.1 – 4.3

Discrete Probability Distributions:

- A- Random variables
- B- Binomial probability distributions
- C- Mean, variance and standard deviation for all probability distribution. (Test 2, TBA)

Week 9 and 10: Chapter 5: section 5.1 – 5.5

Normal probability Distributions:

A- The standard Normal distribution and applications

- B- Sampling distributions and estimators
- C- The central limit theorem and normal as an approximation to the binomial distribution.

Week 11, 12 and 13: chapter 6: section 6.1 - 6.4

- A- Confidence intervals for the mean (large and small sample)
- B- Population Proportions, variation and standard deviation.
- C- Estimating a population mean:
 - i) Standard deviation known and unknown
 - ii) Population proportion
- D- Estimating a population variance:
 - i) Sampling distribution
 - ii) Applying central theorem
 - iii) Confidence intervals
 - iv) Sampling size, student t- scores and chi squared. (Test 3.???, TBA).

Week 14: Review for the final exam (Final exam, TBA)

GRADES POLICY

Final grade will base on two or three midterms, homework, and the final exam.

1) Midterm 1: → 25 %

2) Midterm 2: → 25 %

3) Homework: \rightarrow 10 %

4) Final exam: → 40 %

Grade Equivalency table

Cidad Education of table					
Grade Range	Grade	Grade Range	Grade		
97 ≤ X ≤ 100	A+	77 ≤ X ≤ 79.9	C+		
93 ≤ X ≤ 96.9	Α	73 ≤ X ≤ 76.9	С		
90 ≤ X ≤ 92.9	Α-	70 ≤ X ≤ 72.9	C-		
87 ≤ X ≤ 89.9	B+	67 ≤ X ≤ 69.9	D+		
83 ≤ X ≤ 86.9	В	60 ≤ X ≤ 66.9	D		
80 ≤ X ≤ 82.9	B-	0 ≤ X ≤ 59.9	F		